Direct product G=NxQ with N=C22 and Q=D8
Semidirect products G=N:Q with N=C22 and Q=D8
Non-split extensions G=N.Q with N=C22 and Q=D8
extension | φ:Q→Aut N | d | ρ | Label | ID |
C22.1D8 = C4oD16 | φ: D8/C8 → C2 ⊆ Aut C22 | 32 | 2 | C2^2.1D8 | 64,189 |
C22.2D8 = C22.SD16 | φ: D8/D4 → C2 ⊆ Aut C22 | 16 | | C2^2.2D8 | 64,8 |
C22.3D8 = D8:2C4 | φ: D8/D4 → C2 ⊆ Aut C22 | 16 | 4 | C2^2.3D8 | 64,41 |
C22.4D8 = C22.D8 | φ: D8/D4 → C2 ⊆ Aut C22 | 32 | | C2^2.4D8 | 64,161 |
C22.5D8 = C16:C22 | φ: D8/D4 → C2 ⊆ Aut C22 | 16 | 4+ | C2^2.5D8 | 64,190 |
C22.6D8 = Q32:C2 | φ: D8/D4 → C2 ⊆ Aut C22 | 32 | 4- | C2^2.6D8 | 64,191 |
C22.7D8 = C22.4Q16 | central extension (φ=1) | 64 | | C2^2.7D8 | 64,21 |
C22.8D8 = C2.D16 | central extension (φ=1) | 32 | | C2^2.8D8 | 64,38 |
C22.9D8 = C2.Q32 | central extension (φ=1) | 64 | | C2^2.9D8 | 64,39 |
C22.10D8 = C16:3C4 | central extension (φ=1) | 64 | | C2^2.10D8 | 64,47 |
C22.11D8 = C16:4C4 | central extension (φ=1) | 64 | | C2^2.11D8 | 64,48 |
C22.12D8 = C2xD4:C4 | central extension (φ=1) | 32 | | C2^2.12D8 | 64,95 |
C22.13D8 = C2xC2.D8 | central extension (φ=1) | 64 | | C2^2.13D8 | 64,107 |
C22.14D8 = C2xD16 | central extension (φ=1) | 32 | | C2^2.14D8 | 64,186 |
C22.15D8 = C2xSD32 | central extension (φ=1) | 32 | | C2^2.15D8 | 64,187 |
C22.16D8 = C2xQ32 | central extension (φ=1) | 64 | | C2^2.16D8 | 64,188 |
x
:
Z
F
o
wr
Q
<